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Introduction 
This document provides a description of the programming and operation of the CTQD 
boards in the D0 L1/L2 central track trigger (CTT) system. The CTT fits central fiber 
tracker (CFT) hits to form a track characterized by a transverse momentum (Pt) and 
azimuth angle (Fi). Through an identical readout system, the CTT reconstructs the Fi 
position of energy clusters in central pre-shower (CPS) system. An overview of the CTT 
is shown in Fig.1. The four CTQD boards receive LVDS signals from the eight CTOC 
boards, and transmit the processed track and cluster information to the L2 preprocessors 
with optical fiber G-links. The CTQD board is a generic double-wide daughter board 
(DWDB). Each CTQD has two Xilinx 600 FPGA chips in the U3 and U5 positions. The 
track and cluster algorithms are implemented on the U3 chip alone. The inputs and 
outputs conform to the protocols , unless otherwise noted. The algorithms were first 
described in the system architecture document.   

 
Figure 1 - Block diagram of the CTT system components: Analog Front End, MIXer, Digital Front 
End, Digital Front End Stereo, octant collector (CTOC), quadrant collector (CTQD), STT overlap 
(STOV), STT sextant (STSX), and CTT term collector. 
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Description of the algorithm 
The CTQD board combines track and cluster information from two CTOC boards, and 
produces outputs which are ordered in Pt and Fi respectively. The inputs arrive ordered 
in Pt and Fi, so only a simple ordering is necessary. The most difficult and time-
consuming part of the algorithm is the association of a track Pt with a cluster; because, 
upstream of the CTQD, this is done only when the track and cluster are in the same 
octant. The CTQD board must fill the Pt field of cluster records when it is missing. The 
situation where this occurs is shown in Fig. 2, where the cluster is resident in one octant, 
but the track hits are in the adjacent octant. In this case the cluster Pt bin is missing and 
all tracks in the boundary sector must be tested for possible matching. 

 
Figure 2 - Data flows in the CTQD for combining octants 0 and 1. Links 0,1,2,7 carry track 
information from like numbered octants. Links 3 and 4 carry cluster information for octants 0 and 1 
respectively. 
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The data flow is shown graphically in Fig.2.  For example, combination of information 
from octants O0 and O1 uses tracks from Links 0 and 1, and cluster information from 
Links 3 and 4. To effect the cluster corrections, it is also necessary to have tracks from 
O0 and O7 on Links 0 and 7 respectively. Data flowing between the major functional 
units is represented by the arrows in Fig.2. The six link receivers are shown on the left. 
Track information from two octants is ordered in Pt and transmitted to a level-2 sender, 
which formats and transmits the combined list. Cluster information is first corrected for 
possible “bend in” tracks, and then ordered in Fi before formatting and transmission to 
the L2 processors. 

Figure 3 - CTQD top level block diagram 
 
Firmware Implementation 
Figure 3 is a block diagram (BDE) of the top-level design. The data flows primarily from 
left to right. The front_end module stores the event. The clusto modules are wrappers for 
the cluster Pt correction function. Each instantiation reads one octant of cluster data and 
two adjacent octants of track information. The corrected cluster frames are stored in 
block rams for later processing. 
Ordering of track and cluster information is done by the finite state machines (FSM) sort, 
which is contained in the BDE combine and combine2 respectively.  
The modules sender and sender2 are FSM that construct the six L2 G-link header frames, 
two trailer frames, 2x the number of tracks or clusters, and pad frames. The module 
slow_interface  is responsible for slow monitoring, and is a modification of Olsen’s 
L1CTOC_interface.  
What follows are block diagrams and finite state machines, which illustrate the main 
functions of the implementation. If more detail is required the reader should RTFC. 
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Figure 4 - Block diagram of front_end.  

Block diagram front_end consolidates reception (dwbd_fe), correction (Receivers6), and 
storage (storage) of the input link data. The module EvtVote6 determines the event 
number (tic & turn), and sync6 re-syncronizes the time structure of all links after parity 
correction, which must wait till the end of each event stream. First, each link is 
synchronized to the global board clock using the Olsen’s method, and missing link 
information is stored for later use. Then the data frames from each link are corrected for 
parity errors. The turn and rotation for the event are determined by a majority vote of 
links0, 1, and 2, and all links are compared to the winner. Finally the data frames are 
stored sequentially in a block ram where they can be accessed by the other functional 
units. Since parity correction requires reading all data frames from a link, a final begin of 
event (BoE) signal is created when all links have finished. 
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Figure 5 - Block diagram of receiver 

The module receiver houses several functions: parity correction (corrector), 
determination of the number of data objects using a parity matrix (GetObj), determination 
of the first frame (first), and registering of the header and event frames (HedReg and 
EvtReg).  For each frame, parcom computes the horizontal parity (HPC), and replaces the 
horizontal parity (HP), with HP XOR HPC. 
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Figure 6  - Block diagram of Corrector. 

The block diagram corrector performs the parity correction itself.  The module vpreg 
calculates the vertical parity (VPC) and registers the vertical parity (VP). The module 
GetEoR counts words and issues and end-of-event signal. While reading all input data 
frames, the event is stored in a slice RAM (ram32x25d),  and addresses are computed by 
addsel. Finally, the process NobjParCor computes the parity corrected frame.  
The general expression for parity correction of bit b in frame F is given by: 
 
 F(b)corrected  =  F(b) XOR FC(b),  where 
 
 FC(b) = ( HP(F)  XOR HPC(F) )  AND (VP(b) XOR VPC(b) ), where 
 
HP(F) is the horizontal parity of the input frame,  HPC(F) is the re-computed horizontal 
parity of the input frame, VP(b) is bit b of the vertical parity, and VPC(b) is bit b of the 
re-computed horizontal parity.  
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Figure 7 - Block diagram of SavTrk (top), and waveform of signals (bot). 

Module SavTrk performs final storage function before link combination. The BoRin 
signal precedes the first track/cluster frame by one clock tic – this use of the Begin-of-
Event signal is employed throughout the whole design, and is especially useful in all 
FSM.. The mask (U3) process extracts the octant lsb and inserts it into bit-25, and creates 
an end-of-event frame (bit-27=1) after the last track/cluster frame. BoRin starts the RAM 
address selector (addsel) as the track frames are sequentially stored in the RAM from 
address 1 to Ntracks. 
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Figure 8 - State Machine of Sort 

The state machine process performs a ordering of the two input streams. It relies on the 
concurrent computation of bits d1 and d2 inside compare and compare2 respectively, 
where 

d1<='1' when (  (data1(27)='0' and not(data2(12 downto 8) <data1(12 downto 
8)) ) or  data2(27)='1' ) else '0';  

  
d2<='1' when (  (data2(27)='0' and data2(12 downto 8) <data1(12 downto 8) ) 
or  data1(27)='1') else '0'; 

Recall that data bits 12-8 are the Pt bin and bit 27 is signals the end of data. 
For the cluster ordering 
 d1<='1' when (  (data1(27)='0'  or  data2(27)='1') and err(0)='0' 
 ) else '0';  
  
 d2<='1' when (  (data2(27)='0'  or  data1(27)='1') and err(1)='0' 
 ) else '0'; 
First, a track frame from each link is retrieved from the block ram. On the next clock 
cycle, the d1 and d2 values are compared and the largest Pt is placed in an output register 
and the RAM address is incremented. Processing each input track requires two clock 
cycles and formatting requires two G-link frames, so the output is synchronous and no 
intermediate storage is required. The ordering of clusters is identical except that no Fi 
comparison is necessary since all clusters from the lower octant have lower Fi values 
than those in the higher octant. To speed the process, all addresses concurrently 
precomputed. 
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Figure 9 - Block diagram of CLUSTO 

There is an instantiation of clusto for each cluster link, which stores clusters after 
correction for so called ‘bend-in’ tracks. The module getem (U2) gathers tracks from the 
two adjacent octants, and sends to the output RAM (U1). When all tracks have been 
processed, a done bit is set, and the number of correction tracks is available. 
Upon receipt of the done bit, the fixer module (U4), applies the correction, and cluster 
frames are stored in the output RAM (U3). 
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Figure 10 - FSM of GETEM  

The FSM getem gathers tracks for use in cluster Pt bin correction from the front_end 
RAM. The inputs dat0(2) are track data from octants adjacent to a cluster octant. The 
outputs dat1 are the collected data for octant corrections. The algorithm is implemented 
as follows. The R bit indicates that the track has a cluster in a adjacent sector. If the low-
Fi  (dat0) frame has a track in sector 9 with positive bend (S=1) and R=1, then change 
RA_TS_CFT  (dat(19 downto 16)) to 0 and send to output. If the high-fi (dat2) frame has 
a track in sector 0 with negative bend (S=0) and R=1, then change RA_TS_CFT to 9 and 
send to output. The output frame (dat1) will have the RA_TS_CFT of the cluster for later 
comparison with a cluster RA_TS_CPS. 
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Figure 11 - FSM of FIXER 

The FSM fixer implements a doubly nested loop by addressing dual port RAMs. The 
outside loop over the list of clusters checks if the cluster R-bit=0. If so, then no correction 
is applied and the cluster is output unchanged; otherwise, the list of tracks is looped. Each 
track and cluster are compared to see if they are in the same relative trigger sector 
(RA_TS) and cluster strip address (RA_PSC). If these are equal then the track is matched 
and the cluster Pt field is filled with the track Pt, and a counter is incremented as all 
tracks are checked. If the number of matching tracks is greater than one, the M-bit is set 
to 1. The process is repeated until all clusters are corrected. If no matching track is found, 
then Pt=7 (an illegal value). Note: The last track satisfying the matching condition is 
always used, and a track can be used to correct more than one cluster.   
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Outline of Hierarchy 
front_end - BDE 
 dwdb_fe6 - Jamiesons front end 
 receiver6 - BDE wrapper for 6 receivers 
  receiver - BDE  
   first - checks L1/L2 and datatype 
   parcom - compute horozontal parity  
   hedreg - register header and event frames 
   corrector - BDE for parity correction. 
    addsel - FSM increments read and write address given BoE 
    ram32x25d - 32 deep by 25 wide DP ram 
    GetEor - FSM counts objects and send and end signal 
    del_0 - delays signal by one clock tic. 
    del_0 - delays signal by one clock tic 
    vpreg - computes  Vparity and flags Hparity errors 
    nobjparcor - parity correction 
 evtvote6 - six input majority vote for event number (tic/turn) 
  maj3_24 - 24 bit 3 input majority vote 
  maj3 - 1 bit 3 input majority vote 
  comevt6 - compare six values to the winner. 
 sync6 - FSM send BoE for good links 
 storage - BDE 
  savtrk - BDE for track storage 
   addsel - address incrementer 
   ram256x28d - 28 wide 256 deep DPram 
   mask - add end of event marker and octantinfo to frames 
clusto - BDE store and correct clusters 
 getem - FSM gather correction tracks 
 fixer - FSM correct tracks 
 ram256x28b - block ram for intermediate storage 
combine - BDE combine tracks 
 compare - compare Pt 
 sort - FSM does ordering 
combine2 – BDE, combine clusters 

sync3 – FSM syncronize clusters after correction 
 compare2 - compare fi 
 sort - FSM does ordering 
sender - FSM output tracks  
sender2 - FSM output clusters 
slow_interface - interface to slow controls 
muxN - address multiplexer 
BusArb - does bus arbitration 
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Input Controls 
No controls implemented yet 
 
Outputs 
Header frames 5 and 6 contain status information about the event. Header frame 5 has the  
following format: 
 bits(  5 :  0)  – parity errors for links(7,4,3,2,1,0) 

bits(11 :  6) – link   errors for links(7,4,3,2,1,0) 
bits(15 : 12) - blank 

and Header frame 6: 
bits(  5 :  0) – event errors for links(7,4,3,2,1,0) 
bits(  7 :  6) – truncation errors for links(4,3) 
bits(  9 :  8) – channel DNF errors for links(4,3) 

 bits(14 : 10) – blank 
 bits(15) – OR of all error bits 
The first output frame of each track or cluster has three error bits with the following 
meaning:  

Bit5 – parity error detected and corrected 
Bit6 –  unused 
Bit7  - unused 

 
Slow Monitoring  

page0  -  feature register; 
 page1  -  "00" & parity_history (links 7,4,3,2,1,0 ) 
 page2  -  "00" & link_history    (links 7,4,3,2,1,0 ) 
 page3  -  "00" & event_history (links 7,4,3,2,1,0 ) 
 
Performance 
Copyright (c) 1995-2002 Xilinx, Inc.  All rights reserved. 
 
Design Summary: 
   Number of errors:      0 
   Number of warnings:  100 
   Number of Slices:              2,911 out of  6,912   42% 
   Number of Slices containing 
      unrelated logic:                0 out of  2,911    0% 
   Number of Slice Flip Flops:    2,906 out of 13,824   21% 
   Total Number 4 input LUTs:     3,938 out of 13,824   28% 
      Number used as LUTs:                      2,833 
      Number used as a route-thru:                205 
      Number used for Dual Port RAMs:             900 
      (Two LUTs used per Dual Port RAM) 
   Number of bonded IOBs:           225 out of    404   55% 
   IOB Flip Flops:                             136 
   Number of Block RAMs:             20 out of     24   83% 
   Number of GCLKs:                   4 out of      4  100% 
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Number of GCLKIOBs:                4 out of      4  100% 
Total equivalent gate count for design:  431,267 
Additional JTAG gate count for IOBs:  10,992 
Peak Memory Usage:  105 MB 
 
Device utilization summary: 
 
   Number of External GCLKIOBs         4 out of 4     100% 
   Number of External IOBs           225 out of 404    55% 
   Number of LOCed External IOBs  225 out of 225   100% 
 
   Number of BLOCKRAMs                20 out of 24     83% 
   Number of SLICEs                 2911 out of 6912   42% 
 
   Number of GCLKs                     4 out of 4     100% 
 
 
Design statistics: 
   Minimum period:  15.939ns (Maximum frequency:  62.739MHz) 
   Maximum net skew:   0.946ns 
   Minimum input arrival time before clock:   2.900ns 
   Minimum output required time after clock:   7.352ns 
  


